Modelling of the pulsatile blood flow in an arterial tree of retinal vasculature
نویسندگان
چکیده
The paper presents a numerical investigation of pulsatile blood flow in arterial vasculatures of a mouse retina using a Womersley model incorporating an appropriate outlet boundary impedance at the end of the terminal vessels of the arterial tree (pre-capillary arterioles). The mouse retinal flatmount was prepared for confocal microscopy and the morphometric information of the vasculature was obtained from the confocal images. The pulsatile analysis focused on one of the arterial trees in the retinal vasculature. We included the in vivo viscosity evaluated from the mathematical models of Fahraues-Lindquist effect and the plasma skimming effect in the microcirculation. Comparative investigations of the pulsatile circulation were carried out for cases of constant viscosity, in vivo viscosity, zero and non-zero outlet boundary impedance. In addition, the dependency of the oscillating input impedance at the inlet of the arterial trees on angular frequencies of the oscillation and vessel elasticises was also studied. The study shows the pulsatile blood flow prediction is largely influenced by the outlet boundary impedance. The oscillating input impedance at the inlet of the arterial tree is also found to be significantly dependent on the angular frequency and the Young modulus of the vessel segment.
منابع مشابه
An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملNumerical Study of Hemodynamic Wall Parameters on Pulsatile Flow through Arterial Stenosis
In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model alway...
متن کاملAn implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کامل